
Component 4/Unit 5-3
Audio Transcript

Slide 1

Welcome to Component 4: Introduction to Information and Computer Science. This is Unit 5: Overview of Programming Languages, Including Basic Programming Concepts. This is the third lecture in the unit.
Slide 2

Here are the objectives for Unit 5. After completing this unit, you should be able to:
· Define the purpose of programming languages
· Define the different types of programming languages
· Explain the continuum of programming languages from machine code and assembly languages through scripting languages and high level structured programming languages
· Explain the compiling and interpreting process for computer programs
· Use the following components of programming languages to build a simple program: variables, loops and conditional statements
· And, introduce additional programming concepts such as objects and modularity.
In this lecture we will focus on the fifth objective (e on the slide). This is the first lecture that covers objective (e).
Slide 3

Now we're ready to start looking at the details of programming languages by seeing what programs look like and how they are written. Programming languages have common constructs [kawn-struhkts], particularly high level languages. We will be talking about these constructs [kawn-struhkts] in general, but using examples from Java to illustrate the details.
Slide 4

Here are some programming constructs [kawn-struhkts] that are common to many programming languages; we will discuss each concept and how it's implemented in Java. First, we'll talk about variables--every language uses them and most require them to be declared. We'll also talk about how these variables are assigned values, which can be expressions. We will discuss how data is input and output from the program. Then, we'll discuss control structures which affect the order that the programming statements execute. Finally, we will present an introduction to data structures and modules.
Slide 5

Variables are constructs [kawn-struhkts] that store data in a computer program. Within in a program, the variable is referred to by a unique name. When the program is run, the variables are actually memory locations that hold data. The value of a variable is the value that's stored in the memory location. This value can be changed unlimited times during a program; hence the name variable. There is a similar construct [kawn-struhkt] that holds values that remain constant during a program; these are called constants. They, too, are stored in memory, but the values cannot change once they are given an initial value.
Slide 6

Every variable and constant has a data type; this refers to what kind of data the variable or constant can hold. Data types can be integers (whole numbers), floating point numbers (numbers with a decimal part), characters (any alpha-numeric single character), Boolean [boo-lee-uhn] values (true or false) among others. The type of a variable determines how much memory is needed to store the value. For example, floating point numbers require more space than integers. Also, the program and computer need to know how to handle the data. Different data types encode values into binary numbers differently; hence, a value stored in memory needs to have a type associated with it so that it can be used properly.
Slide 7

Java is a strongly typed language. This means that all variables must be declared with a given type first before they can be used. Other languages use implicit typing where declarations are not used. Instead, the data type is inferred from the values that are assigned to the variables.
Java has two categories of data types: primitive and class types. Primitive types are used for single, simple variables. Shown is a list of some of the primitive types: int [ihnt] (integer), double and float (floating point numbers), char [chahr] (character), and boolean [boo-lee-uhn]. Class types refer to data types used to create objects. These class types can be defined by users or within Java libraries. A commonly used class type is the String, which is a series of characters.
Slide 8

Declaration statements are used to define variables--variables are given a name and the data type is provided (this is required for strongly typed languages). The variable's type controls what values it can hold. For example, a floating point variable cannot hold a character.
In Java, a variable must be declared before it can be used. Typically, we will put variable declarations at the start of a method. Here are some example of declaration statements in Java:
· a variable named age that is an integer

· a variable named bmi [B-M-I] that is of type double, which is one of the floating point types
· a variable named gender that is of type char; this data type will hold one character
· a variable named completed that is of type Boolean [boo-lee-ehn]; this type will hold the values true or false (or one or zero)
Note that all these declaration statements have a semicolon at the end of them. Most Java statements end with a semicolon.
Slide 9

Once a variable is declared (if it's required by the programming language), then the variable can be used. One way a variable is used in a program is to have a value assigned to it. That is called an assignment statement. In Java, it looks like this example:
age - equal sign - 42 - semicolon [age-dash-equal sign-dash-forty two-dash-semicolon]
The equal sign is called the assignment operator. Note that this is different from the equality operator, which we will see later. Because we don't want to confuse an assignment statement with one that checks for equality, we'll often say something like "The variable age is assigned the value of 42". Or we can say "age is assigned 42" or for short, "age gets 42".
Slide 10

As we saw in the previous slide, we can assign values to variables, but what exactly constitutes a valid value? We can use what are called literals--actual values such as 18, 2.5 [two-point-five] or the character f.
But we can also use expressions for values. Expressions are comprised of some combination of literals, variables and operators as shown by these examples. The value of the variable weight divided by 2 is an expression, as is 5 plus the value of the variable age. An expression can be made up of all literals such as 3 plus 2 divided by 5 multiplied by fifteen. Or it can be made up of all variables, such as the values of the variables n and m multiplied together.
Slide 11

Arithmetic [air-ith-meh-tihk] expressions are combinations of arithmetic operators, literals and variables that evaluate to a value. The arithmetic [air-ith-meh-tihk] operators include plus, minus, multiply and divide.
The order in which these operators are evaluated is determined by precedence. Any expression in parentheses is evaluated first. Then, any multiplies and divides are evaluated and then adds and subtracts. Note: if all the operators have the same order of precedence (say all are additions), then the expression is evaluated in order from left to right.
Slide 12

So, here are some examples of expressions used in assignment statements. The first assignment assigns the value of weight divided by height times height to the variable bmi [B-M-I]. Note that because height times height is in parentheses, it will be evaluated first. Then the value will be divided into weight to finish the evaluation.
Another assignment statement we see often is incrementing a variable. This is shown by the second example: age gets age plus one. Note that from a mathematical perspective, the statement age equals age plus one makes no sense. But, remember, we aren't looking at equality here--we're doing an assignment. So, if age had the value 30, then the assignment statement would change the age to 30 + 1 or 31.
Finally, we have to consider the order of operations to know what value the final assignment statement has. The variable tricky is assigned 3 plus 5 times 2. This evaluates to the value thirteen since 5 times 2 is evaluated first (ten) then is added to 3 which makes thirteen. Note that it is NOT evaluated in order from left to right--this would be sixteen (3 plus 5, which is 8 times 2, which is sixteen), which is incorrect.
Slide 13

All programming languages provide programming statements for inputting and outputting data; most programs need data in order to do anything useful. Programs can get data from users typing in values from the keyboard or by reading input files. If we were doing more advanced programming, data could come from databases or from elements on a graphical user interface.
Similarly, all programs provide output onto the screen or written out to files. There are other options of output to printers or graphical user interfaces. For our examples in Java, we will focus on showing how to get input from the keyboard and print output to the computer screen.
Slide 14

To write information to the screen in Java, we use a couple of different commands. These are provided in the System.out [system-dot-out] class--they are print and println [print-el-en] (printline). Print does not include a line return, but println [print-el-en] does.
Here are some examples of how to use print statements in Java. The first statement, System-dot-out-dot-println-parenthesis-quote-hello world-exclamation point-quote-parenthesis-semicolon is how you would write Hello World! to the computer screen. Note: we want to output the text Hello World!, so we need to enclose it in quotes. Everything that we want to print goes between the parentheses that appear after the print or println method name.
We can use print the same way. So if we have the statement System-dot-out-dot-print-parenthesis-quote-My name is -quote-parenthesis-semicolon, followed by the statement System-dot-out-dot-println-parenthesis-name-parenthesis-semicolon, it would print My name is and whatever is stored in the variable name all on one line. Note: name does NOT have quotes around it, which means that it's a variable. When you use a print statement to print a variable, it prints whatever the value is of that variable. Similarly, we can print out the value of the variable gender by using the statement System-dot-out-dot-println-parenthesis-gender-parenthesis-semicolon.
Slide 15

Getting input from the keyboard in Java is more complicated that writing screen output. There are several ways to do it, but the one that we'll show here requires the java.util [java-dot-yew-tihl] package. Packages in java are libraries of code that provide special functionality. In this case, we're using a package that's predefined within Java itself, but isn't automatically included in our programs like as is System.out [system-dot-out].
To include a package, we'll use the statement import java-dot-util-dot-star-semicolon at the top of the code. We'll see an example of this in a couple of slides.
The second thing we need to do is to create on object of the Scanner class and tell Scanner where we want to get input from. In our case, we want it from the keyboard, which is defined as System.in [system-dot-in]. The statement to do this is shown here:
Scanner keyboard gets new Scanner parenthesis System-dot-in parenthesis semicolon.
This means that we just created an object called keyboard that's of type Scanner and gets its input from System.in [system-dot-in], which is the keyboard.
We'll then use methods that are defined in the Scanner class to get input from the keyboard. These methods are next (which gets the next string or word of characters), nextLine (which gets the next line of characters), nextDouble (which gets the next double value) and nextInt [next-I-N-T] (which gets the next integer value).
Here's an example of how we would use such a method call in a Java programming. Because all these methods produce a value, you'd want to use them wherever you'd use a value or an expression, like an assignment statement. So, in this case, we're assigning the variable age the value that keyboard-dot-nextInt [next-I-N-T] returns.
Note: to fully understand the Scanner class and how to use it, you would need to understand object oriented programming. We will discuss it more in the last lecture of this unit, but if you want to know more, you can refer to any Java textbook.
Slide 16

Now we're ready to write a simple program! Here's what we need to do:
We want to write a program that will calculate BMI (body mass index). This program will be interactive--the user will enter weight in kg [kilograms] and height in m [meters]. The program will calculate the BMI and output it to the screen.
Slide 17

The first thing we do before writing any code is to design our program. Because it's a very simple program, the design doesn't look very different from the program statement. But, this is the place where we provide all the details we'll need for the program, such as the formula we'll use for calculating BMI.
The pseudocode begins with a prompt to the user for their weight in kilograms. Then, we'll read in the value he or she enters for the weight. Then, we'll prompt the user to enter their height in meters. Then, we'll read in the value he or she enters for their height. Then, we'll calculate the BMI. Since we're using metric values, the formula for BMI is weight divided by height times height. Then, we'll output the BMI which finishes the program.
Slide 18
Here is what our Java program looks like. Let’s walk through it line by line. The line numbers given in blue on the left are not part of the program--they are shown for reference purposes only. What is written on the right side of the double forward slashes are comments that the computer will not read.
1. The first statement shows the import of the package java-dot-util.
2. The next line is the first line of the class CalcBMI [kalk-B-M-I]. This is the name of the class that contains our program. In Java, all code must belong to a class; we chose to name ours CalcBMI [kalk-B-M-I].
3. The next line is the open curly bracket. We use curly brackets to signify the start of a class, a method, etc.
4. The next line is the first line of the main method. All code in Java is either an instance variable declaration or part of a method definition. Every program in Java must contain a main method. Because our program is short, we'll just put all our code in the main method. We're not very concerned by the exact syntax of how the main method is defined in this line.
5. The next line is another open curly bracket. This signifies the start of the main method.
6. Now we have our variable declarations. We're going to need variables to store the weight, height and BMI. We'll give them the data type double since they may have decimal values. Note that because they all have the same type, we can declare them all in one statement, with the variable names separated by commas.
7. Now we have to create our Scanner object, which we'll name keyboard, just like the example we saw in the previous slide.
8. We left a blank line to separate the variable declarations from the rest of the code. We can include as many blank lines in our code as we like--Java doesn't care. I didn't include any other blank lines in this code since there wouldn't be room for them on the slide.
9. Now we're ready to write our code. We'll first output a line that says "Welcome to the BMI calculator".
10. Next we'll output a line that gives the direction to our user to enter their weight in kilograms. If we didn't include this, the user wouldn't know what to do.
11. Next, we'll use the nextDouble method in the keyboard object to read in the value he or she entered and then assign it to the variable weight.
12. We'll repeat the process for the height. We'll output a prompt to the user to enter the height in meters.
13. We'll use the nextDouble method in the keyboard object to read in the value he or she entered and then assign it to the variable height.
14. Now we're ready to calculate the BMI--we'll assign the variable bmi the value weight divided by height times height.
15. Then we'll output the label "BMI is" without a line return.
16. Finally we'll output the value of the bmi variable.
17. The next line is a close curly bracket which ends the main method.
18. The final line is a close curly bracket which ends the CalcBMI [kalk-B-M-I] class definition.
And that's all the code!
Slide 19

Here's a sample output from running our program.
You'll see that we output the statement "Welcome to the BMI calculator". Then, we prompt the user to enter the weight in kg [kilograms]. In this case, the user enters in 68 (all values shown in green are user entered values). Next, we prompt the user to enter the height in m. The user enters 1.72 [one-point-seven-two]. Finally, after calculating the BMI, the program outputs it. In this case it's 22.985 [twenty-two-point-nine-eight-five]…and so on. We'd have to do some more formatting to output the decimal value with only 2 or 3 decimal places, but that's not necessary for this example.
At this point, feel free to go back to the previous slide to review the code again, comparing it with what the computer outputs on the screen. I hope you can understand how this simple Java program works. It's not necessary to understand every little syntax detail, but I hope you understand the basics of variables, data types, declarations, assignment statements and input and output statements.

Component 4/Unit 5-3
Health IT Workforce Curriculum
7

Version 2.0/Spring 2011
This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015.

