
Component 4/Unit 5-1 
Audio Transcript

Slide 1 

Welcome to Component 4:  Introduction to Information and Computer Science.  This is Unit 5:  Overview of Programming Languages, Including Basic Programming Concepts.  This is the first lecture for this unit.
Slide 2 

Here are the objectives for Unit 5.  After completing this unit, you should be able to:
· Define the purpose of programming languages
· Define the different types of programming languages
· Explain the continuum of programming languages from machine code and assembly languages through scripting languages and high level structured programming languages
· Explain the compiling and interpreting process for computer programs
· Use the following components of programming languages to build a simple program:  variables, loops and conditional statements
· And, introduce additional programming concepts such as objects and modularity.
In this lecture we will focus on the first three objectives (a, b, and c on the slide).
Slide 3 

Programming languages are languages used for telling a computer what to do.  Like natural languages, programming languages have a syntax—a set of specific commands and statements with rules as to how these statements can be used and combined.  There are keywords that are used in the statements and punctuation is used for combining and defining the statements.  The goal of using a programming language is to create a set of instructions that accomplishes a certain task and that can be executed on a computer.
Long before there were electronic computers, there were “programming languages”.  Jacquard [zha-kahrd] Looms used punched cards for defining and recreating a design on a loom.  Similarly, punched rolls were used for “programming” player pianos to play a particular song.  In both of these cases, the languages were sets of patterns of punched holes that could be interpreted by the loom and the piano to produce a specified output.  As you may recall, the punched cards for Jacquard [zha-kahrd] Looms were the inspiration for punched cards that were later used to program computers.
Slide 4 

All software is written in some sort of programming language.  There are many different languages available; we will discuss them in detail later in this lecture.  Regardless of what program it is—whether it’s large and complex or small and simple—it was written in a programming language.  That includes everything from operating systems, to word processing programs to small, simple utilities.
Slide 5 

Software development is the process by which software applications are developed.  It involves much more than a programmer sitting behind a computer writing code--there are many steps and stages to the process from the initial requirements and design, through the programming (also known as coding), testing and deployment.  Also, the process is not linear--each step may be repeated several times.  For example, there may be an initial requirements and design phase where a prototype is developed.  This prototype is then further analyzed by users for additional requirements and changes/additions to the design.  
Note:  the design for the software will vary depending on the type of programming language and environment that is used.   Also, the implementation phase may include some elements of design as well; the exact coding solution should be mapped out ahead of time.
Software development belongs to the larger systems development process, which is covered in more detail in Unit 9.
Slide 6 

The process for programming begins with a problem statement (this is usually part of the design given to a programmer).  Once the problem or task is clear, then the programming solution must be mapped out with an algorithm [al-guh-rith-uh[image: image1.png]


m].  An algorithm is a plan or a series of steps that will accomplish a task like calculating a result.  It is important that the algorithm is analyzed for correctness; programming should not begin until a correct solution has been found.  More details about algorithms will be given in subsequent slides.
Once there is a valid algorithm, the programmer can then write the code or program that implements the algorithm.  The program can then be tested for the correct result as determined by the algorithm.  Any errors must be fixed before the program is considered complete and ready for deployment.
Note:  this is a very simplified overview of the programming process which serves as an introduction to programming.  For more details about the process itself you should consult texts or courses on software development.
Slide 7 

Algorithms are an important part of program development.  An algorithm is a set of steps that defines how a task is performed.  For example, you may have an algorithm for determining which TV program you watch every evening.  You may look at the listings to find a show that interests you and turn the TV to that channel.  If there is more than one program you’d like to watch, then you may have to decide which one to watch and which one or ones to record.  If there’s no show that appeals to you, you may watch a recorded show, a show that’s available on-demand or watch something on Hulu on your computer.  Algorithms can be used to define any task that can be performed by humans, animals (some cats follow an algorithm for grooming) or machines.
All computer programs implement an algorithm.  The algorithm is the “plan” or “design” for the program.  It is important to design an algorithm first, before writing the program.  And because algorithms can be written independent of computer programs, algorithm development occurred before there were computers.  In the 19th century, Ada [aid-uh] Lovelace wrote an algorithm for encoding Charles Babbage’s Analytical Engine to calculate Bernoulli [ber-noo-lee] numbers.  Even though it was an algorithm and never implemented for the engine (since the engine was never built), it is considered by many to be the first computer program ever written.
Slide 8 

Let’s look at an example of an algorithm written for making a peanut butter and jelly sandwich.  There are just 4 steps to this algorithm—gathering ingredients and tools, spreading peanut butter on one slice of bread, spreading jelly on the other slice and then putting the two slices together.  While this algorithm is complete, the steps are general and vague.
Slide 9 

Now, let’s look at another example of an algorithm for a peanut butter and jelly sandwich.  In this algorithm, we keep the same 4 steps, but we add detailed sub steps to make the algorithm more specific.  For example, this algorithm lists exactly which tools and ingredients we will need.  Also, it gives very specific steps as to how to spread the peanut butter on a slice of bread.  We could have continued this level of detail for spreading the jelly on the other slice, but we ran out of room on the slide!  
The idea is that we can make our algorithms as specific as we need them to be.  There may be cases when we do not need to be very specific about each step of an algorithm, particularly if we know we will be using an existing tool, library or program to accomplish that step.   Since we will be using something that’s already defined, we do not need to bother with the specific design of that step.
On the other hand, if we don’t make our algorithm specific enough, it may be difficult to implement.  For example, if you had never made a peanut butter sandwich before, you may be confused by the vague statement “Get the ingredients and tools”.    But, if you have made one before, you probably do not need a detailed list of ingredients and tools since it’s a short list that’s easy to remember.
Slide 10 

Algorithms are used to describe the solution for a problem or task without using the specific programming syntax of a particular programming language.  Instead, we can use something called pseudocode.  Pseudocode consists of simple English statements that represent the steps of the algorithm; this was essentially what we were using in our peanut butter and jelly algorithm.  Flow charts can also be used for describing an algorithm.  For more details on the design and development process for algorithms and software, please see Unit 9 of this component.
As mentioned previously algorithms are used to plan a program before writing any programming statements. Potential problems with the algorithm itself can be found before any implementation occurs. The algorithm can be analyzed for correctness—i.e., does it produce a correct result?, how long will it take to complete and how much storage will it need? This information is necessary for determining if the algorithm should be implemented at all.  Often, there are alternative algorithms which may be better for the problem.
Slide 11 

Once we have our algorithm, we can begin programming or coding.  Programs and programming statements are also referred to as code (short for computer code).  Writing programs is then referred to as coding.  
There are many different programming languages available; programmers must select one to use.  The choice of programming language is dependent on several factors.  First of all, we need to know what the program is going to do.  If it's going to run within a webpage on a client computer, then we might select a scripting language like JavaScript.  If it's going to run on a Windows PC, then we may select a Microsoft developed language like C# [see-sharp].  If we want our program to run on multiple different machines, we may consider using Java.  Ultimately, programmers are constrained by what programming languages they have access to.  For example, languages like Java are freely available, but developing in a Windows environment requires purchasing software tools that can be expensive.  Also, if you are programming for a company, you will use the programming environment that is in use there; you don't usually have a choice.  If the company uses Java for development, then you will need to program in Java.
Slide 12 

Here is a list of five different generations of programming languages and some examples of each.  In some ways, this list represents the progression of programming languages over time, but not in all cases (for example, some third generation languages are newer than some fifth generation languages).
The first generation languages were machine code, which is the sequence of 1s [ones] and 0s [zeroes] that the computer can understand and execute.  Needless to say, programming in 1s [ones] and 0s [zeroes] isn't easy, so future generations of languages were developed to make programs more understandable to humans.  The second generation of languages were assembly languages which translated those 1s [ones] and 0s [zeroes] into words.  This was a better approach, but still somewhat limited, particularly since assembly languages were unique to each type of computer.  Third generation languages added operations to the commands to make the programs more general; now programming languages were no longer tied to a particular computer.  This third generation of languages includes older languages such as FORTRAN, BASIC and C, but also newer languages like Java.  
Fourth generation languages use powerful, complex commands which result in fewer programming statements.  Database querying languages such as SQL [S-Q-L] are good examples of this.  (Note: database querying languages will be covered in depth in Unit 6).  Fifth generation languages attempt to come even closer to natural languages, which is what Prolog was developed to do.  Other experts consider programming usual visual, interactive environments to be fifth generation programming.
First and second generation languages are considered to be low level languages; that is, they are closer to the actual machine code the computer understands.  Third generation and up are considered to be high level languages; they are closer to natural language than they are to machine code.
We will discuss first through third generation languages on the next slides.  Fourth and fifth generations are beyond the scope of this unit.
Slide 13 

Every computer has its own instruction set.  It's usually a small set of tasks the computer can do (usually extremely fast).  Each instruction is a unique sequence of zeros and ones.
Every computer program or application is ultimately represented as machine code, which are groups of instructions (often millions).  
When computers were first created, programmers needed to program using machine code--there were no other programming languages.  How this was done was dependent on the computer.  Some computers had series of switches that needed to be turned on or off (corresponding to ones and zeros).  Other machines were programmed using punched cards where the punches or no punches in particular positions represented zeros and ones.  A stack of these punched cards then became the program and data; they were fed into the computer using a card reader.
Slide 14 

While sequences of zeros and ones are understandable to a computer, they aren't particularly clear for humans.  Assembly languages used words to represent instructions and data.  The slide displays an example of assembly code.  It's an improvement over zeros and ones, but it's still tedious to read and program.  Also, because assembly language is almost a direct translation of machine code, it is unique to each type of computer.  That means that the same program written to run on a Windows 7 PC would need to be rewritten to run on an iMac.  Also, because each statement is a short machine instruction, assembly code is very, very long.
Slide 15 

The next generation of languages moved away from machine code as the basis of the programming statements.  Instead, the syntax of the languages focused on operations that could be done, regardless of the underlying machine code.  This meant that programs could be written once and executed on different types of computers.  (Note:  we will discuss the process of translating programs to machine code in the next lecture in this unit).
Many modern programming languages belong to the third generation category.  Languages such as FORTRAN, a language developed and used in the scientific and engineering community, COBOL, a language developed and used by the business and financial community, C, a language developed for large systems but now used extensively for other applications as well, C++ [C plus plus], an object oriented version of C, C# [C-sharp], a portable object oriented language developed by Microsoft, Java a freely available, portable object oriented language and VB.Net, an object oriented version of Visual Basic developed by Microsoft.
Slide 16 

Programming paradigms relate to the style and concepts used for programming.  Different languages support different paradigms; often a language will support multiple ones.  Procedural programming languages focus on structuring code according to function.  The language is a group of procedures, also called subroutines, functions or methods.  A procedure is a series of steps that are performed to accomplish a certain task or calculate a result.  These procedures are called during the execution of the program.  The procedural programming paradigm is very popular and many languages support it, including BASIC, COBOL, FORTRAN and C.
The functional programming paradigm relies on functions for its programming statements.  These statements and functions are similar to mathematical functions and formulas.  LISP [lisp] and Scheme are examples of functional programming languages.  While functional programming has been predominately used in academic settings, there are some functional programming languages used in statistics (R), and mathematics (Mathematica).  Also, the formulas used in spreadsheet software such as Excel can be considered functional programming.
Object Oriented Programming (OOP [O-O-P]) is similar to procedural programming except that procedures (or methods as they are called in Object Oriented languages) are grouped with variables that relate to them to form objects.  Storing the data and methods together often eliminates the need for arguments in the methods.  Objects are created during the execution of the program and all method calls are attached to some object.  Object Oriented Programming has become very popular and there are many languages that support it such as C++ [C-plus-plus], C# [C-sharp], Java and Ruby.  We will discuss Object Oriented Programming in more detail in lecture 5 of this unit.
There are many other programming paradigms such as declarative programming used in SQL [see-kwuhl] queries, event-driven programming which is used in programming graphical user interfaces, domain specific languages such as HTML [H-T-M-L] used in web browsers,  and logic programming which represents programming as logic formulas and rules (Prolog [pro-log] is an example).
Slide 17 

Another type of programming language that is often used today is called a scripting language.  Originally, scripting languages were developed to "program" or control other applications.  This was necessary for early systems where programs were batched and run at the same time.  Shell scripts are the scripting languages that were developed to do this in Unix environments.  JavaScript is an example of a scripting language that works within web browsers that controls how a webpage is displayed.  Perl was created for easy processing of text files.
Some scripting languages have evolved to full-fledged application development languages, such as Perl and Python.  They still are referred to as scripting languages because of their origins.
Slide 18 

Special purpose languages for healthcare include MUMPS, MIIS [meese] and Magic, which all come from Neil Pappalardo, founder of Meditech [med-ih-tek]. Many electronic health record systems are written at least in part using a language from this family of languages.
Slide 19 

This chart shows one way of categorizing programming languages from low-level to high level languages, from left to right respectively.  This presumes that the lower level languages on the left are more difficult for humans to understand than the higher level languages on the right.  On the left side, we have machine code and assembly code which are low level languages.  In the middle, we have third generation languages such as BASIC, MUMPS and C, which are considered high level languages, but don't have many of the more advanced features like objects.  Next, we have object oriented languages such as C++ [C-plus-plus] and Java; Java is further right than C++ [C-plus-plus] because it hides a lot of the lower level details of programming such as memory addressing and pointers.  Finally, on the right we have object-oriented scripting languages such as Python and Ruby, both of which emphasize clear program readability.
Note:  this is just one way of characterizing programming languages along a continuum.  There are others and even along this continuum there is still room for debate.  Some programmers may find the object oriented languages on the right to be more difficult than the procedural languages in the middle.  Still, this represents the intent of the programming language developers over time; the object-oriented scripting languages on the right were developed after those on the left and were intended to improve upon them.

Component 4/Unit 5-1
Health IT Workforce Curriculum
7



Version 2.0/Spring 2011
This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015.



