

Data Type

- Alphanumeric (Character set: A-Z, 0-9 and some special characters)
- Customer address, name, phone number, Customer ID, Age
- Alphabetic (Character set: A-Z)
- Alphanumeric data type is used instead of alphabetic most of the time.
- Numeric (Character set: 0-9)
- Account balance, Age, Count of transactions, Commission rate.

Constants

- Must not change during at least one execution of the program
- Something whose value has been identified as not volatile
- Examples
- Number of days in the week
- Number of months/periods in the business calendar
- State's legal driving age
- Pi

Component 4/Unit 5
Health IT Worktorce Curriculum Version 1.0/Fall 2010 ${ }^{3}$
\qquad

Categories of Source Code

\qquad

- Definitions of variables, constants, and files
- Input and Output (I/O) operations
\qquad
- Assignment statements
- Arithmetic expressions
- Exclusive options
- Repetitive execution
- Procedures (declaring and invoking)
\qquad
\qquad
\qquad
\qquad
\qquad

VBA Code Definitions of variables, constants, and files ($1-3$)	
1 Dim HoursWorked As Single	
2 Dim PayRate As Currency	
3 Dim GrossPay As Currency Procedures (declaring) $(4,9)$	
4 Private Sub cmdGrossPayMod_Click() Input and Output (I/O) operations (5 - 6)	
5 PayRate = txtPayRate. Text	
6 HoursWorked = txtHrsWrkd.Text Assignment statements \& Arithmetic expressions (7)	
7 GrossPay = PayRate * HoursWorked Input and Output (I/O) operations	
8 IblGrossPay.Caption = GrossPay	
9 End Sub	
Component 4/Unit 5 Health IT Workforce Curriculum Version $1.0 /$ Fall 2010	5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9 End Sub
Version 1.0/Fall 2010

Logic Constructs

- Sequence
- Alternation (Selection, If-Then-Else)
- Iteration (Repetition, Looping, Do loops)
- Concurrency*
- Recursion* \qquad
* These two constructs were said to have been proved unnecessary by two Italian
Mathematicians, C. Bohm and G. Jacopini in a paper they wrote in $1966[6]$. Since
then there has been some controversy over that proof[7], but it can be said that for at
least most applications solved on a computer that these two logic constructs,
$\begin{aligned} & \text { although useful and perhaps more efficient at times, are not necessary for the } \\ & \text { solutions of those computer problems. } \\ & \text { Heath IT Workforce Curiculum } \\ & \text { version } 1.0 / \text { Fall } 2010\end{aligned}$

Sequence

- Statements are executed in the sequence they \qquad are written
- Analogous to following step by step instructions for putting something together
- In programming sequence can be critical for getting the correct results
- When designing a program the correct sequence of statements may not be apparent unless the process is looked at carefully so as to identify all the steps that are necessary

Alternation (Selection, IF-THENELSE)

- Breaks up sequence
- Provides exclusive options
- Comes in many forms.
- Simple One-tailed
- Simple Two-tailed
- Case structure
- Nested or Dependent
- Compound
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple Alternation
 (example code is shown in pseudocode)

- One-tailed
- Example: If light is green

Go
End If

- Two-tailed \qquad
- Example: If light is green

Go
Elself light is red
Stop
End If

Component 4/Unit 5
Health IT Workforce Curriculum
version $1.0 /$ Fall 2010 9

Other Forms of Alternation

\qquad

- Case \qquad
- Nested or dependent
- Compound

