
Component 4/Unit 9c

Lecture Transcript
Slide 1: Object Modeling
Object-oriented analysis is another way to view and model system requirements. It all begins with the construction of a model. A model is an abstraction of the underlying problem. The domain is the actual world from which the problem comes. Models consist of objects that interact by sending each other messages. Messages are commands that tell objects to perform methods. Think of an object as "alive." Objects have things they know (attributes) and things they can do (behaviors or operations). The values of an object's attributes determine its state. Classes are the "blueprints" for objects. A class wraps attributes (data) and behaviors (methods or functions) into a single distinct entity. Objects are instances of classes.
The heart of an object-oriented problem solving is the construction of a model. The model abstracts the essential details of the underlying problem from its usually complicated real world.
Several modeling tools are wrapped under the heading of the Unified Modeling Language (UML). UML is applicable to object-oriented problem solving. UML helps you specify, visualize, and document models of software systems, including their structure and design. The analyst can analyze your future application's requirements and design a solution that meets them, representing the results using the UML standard diagram types: structure diagrams, behavior diagrams and interaction diagrams.

Slide 2: Uniform Modeling Language
A class diagram gives an overview of a system by showing its classes and the relationships among them. Class diagrams are static -- they display what interacts but not what happens when they interact. Object diagrams show instances instead of classes. They are useful for explaining small pieces with complicated relationships, especially recursive relationships. A composite structure diagram shows the internal structure of a classifier, including its interaction points to other parts of the system. It shows the configuration and relationship of parts, that together, perform the behavior of the containing classifier. To simplify complex class diagrams, you can group classes into packages. A package is a collection of logically related UML elements. A component is a code module. Deployment diagrams show system hardware, the software installed on that hardware and the middleware used to connect the disparate machines to one another.
Use case diagrams describe what a system does from the standpoint of an external observer. The emphasis is on what a system does rather than how. A use case diagram is a collection of actors, use cases, and their communications. Use case diagrams are closely connected to scenarios. A scenario is an example of what happens when someone interacts with the system. Here is a scenario for a medical clinic: "A patient calls the clinic to make an appointment for a yearly checkup. The receptionist finds the nearest empty time slot in the appointment book and schedules the appointment for that time slot." A use case is a summary of scenarios for a single task or goal shown in the diagram as an oval. A single use case can have multiple actors. An actor is who or what initiates the events involved in that task. Actors are the roles that people or objects play and are shown in the diagram as stick figures. The connection between actor and use case is a communication association. Use case diagrams are helpful in three areas: determining features (requirements). New use cases often generate new requirements as the system is analyzed and the design takes shape; communicating with clients. Their notational simplicity makes use case diagrams a good way for developers to communicate with clients; generating test cases. The collection of scenarios for a use case may suggest a suite of test cases for those scenarios. An activity diagram is essentially a fancy flowchart showing how activities depend on one another. Activity diagrams and statechart diagrams are related. A statechart diagram focuses attention on an object undergoing a process (or on a process as an object), an activity diagram focuses on the flow of activities involved in a single process. State machine diagrams (aka state transition diagrams) depict the various states that an object may be in and the transitions between those states or how an entity responds to various events by changing from one state to another.
Sequence diagrams detail how operations are carried out -- what messages are sent and when. Sequence diagrams are organized according to time. Think of them as dynamic models of use cases showing the interaction among classes during a specific time period. Timing diagrams are relatively new and are used to explore the behaviors of one or more objects throughout a given period of time. Timing diagrams are often used to design embedded software, such as control software for the fuel injection system in an automobile, although they occasionally have their uses for business software too. Communication diagrams or collaboration diagrams are also interaction diagrams. They convey the same information as sequence diagrams, but they focus on object roles instead of the times that messages are sent.
Slide 3: Logical vs Physical Models
The logical model is technology independent because it illustrates the system without regard to any possible technological solution. Logical design models business requirements that must be fulfilled by any technical solution we might want to consider. Logical design is also called conceptual design or essential design.
A physical model describes how the system is to be or has been implemented. Also known as a technical design or the implementation model, it represents a specific technical solution. During the systems design phase a physical model is created of the new information system that follows from the logical model and involves operational tasks and techniques.
Many analysts follow a four-model approach which means they begin with a physical model of the current system and then develop a logical model of the current system before designing the logical model and then building the physical model of the new system.
Slide 4: Development Strategies
The main objective of the system analysis phase in the SDLC is to build a logical model of the new information system. Development strategies includes the evaluation of alternative solutions which, along with requirements modeling, data and process modeling and object modeling, leads to the preparation of the system requirements document and presentation of that systems requirements document to management. The development strategies listed here are discussed further on the following slides.
Slide 5: Internet
Software as a Service companies have developed fee structures based on how the application is used by customers during a specific time period: fixed fees, subscriptions and a usage or transaction model. An example of this is an email archiving service which addresses the need for email e-discovery prompted by the Federal Rules of Civil Procedure which demands that litigating entities are able to produce emails relevant to the specific case. NextGen, a healthcare information management vendor has recently announced the availability of subscription-based, SaaS versions of NextGen EHR (electronic medical record) and NextGen EPM (electronic practice management).
Traditional systems include legacy applications and systems without a Web component. The SDLC is an example of traditional systems development as are RAD and JAD. In a traditional development environment:
systems design is influenced by compatibility issues including existing hardware and software platforms and legacy requirements
systems are designed to run on local and wide-area company networks
systems often use Internet links and resources but Web-based features are treated as enhancements rather than core elements of the design
development usually follows one of three main paths – in-house development, purchase of a software package with possible modification or the use of outside consultants
scalability can be affected by telecommunications limitations and local network constraints
many applications require substantial desktop computer power and resources
security issues often are less complex than with Web-based systems because the system operates on a private telecommunication network rather than the Internet.
Wikis and Learning Management Systems (LMS) are examples of Web-based systems development. In the Web-based systems development environment:
Internet-based development treats the Web as the platform rather than just a communications channel; systems are developed and delivered in an Internet-based framework like .NET or WebSphere
systems are easily scalable and can run on multiple hardware environments
systems are often deployed by large companies as enterprise-wide software solutions for applications such as customer relationship management, order processing and materials management
software treats the software application as a service that is less dependent on desktop computer power and resources so there is a limit to in-house involvement while the vendor installs, configures and maintains the system
software usually requires additional layers called middleware to communication with existing software and legacy systems.
Web 2.0 is often described as a second generation of the Web that will enable people to collaborate, interact and share information more dynamically. Interest in Web 2.0 is driven by the idea of the Internet as a platform with applications delivering software as a continuous service and a limitless number of users that can connect or how users can consume, modify and exchange data. Examples of the Web 2.0 movement are MySpace, Facebook and Wikipedia. By the way, Wikipedia is an example of a wiki which is a Web-based repository of information that anyone can access, contribute to or modify. Cloud computing refers to the cloud symbol that indicates a network or the internet. Here we have a "cloud" of remote computers providing a total online software and data environment hosted by third parties. A user's computer does not perform processing or computer tasks—the cloud does. According to some, cloud computing could bring enormous computing power to business and personal Internet users. Major cloud service providers include Microsoft, Hewlett Packard, IBM, Salesforce and Amazon.
Slide 6: Outsourcing
Outsourcing is the transfer of information system development, operation and / or maintenance to an outside firm that provides these services for a fee on a temporary or long-term basis. Traditionally, IT tasks have been outsourced as a way of controlling costs and dealing with rapid technological change. Now it has become part of an overall IT strategy for many organizations and has affected software vendors who have adjusted their marketing accordingly. Two popular outsourcing options use application service providers and Internet business service firms.
Application service providers deliver a software application or access to an application by charging the user a subscription fee; it rents an operational package to the customer. Using an ASP means the company does not have to design, develop, implement or maintain the package. See slide 20 for more information. At first, SaaS seems to be a similar version of the application service provider (ASP). The first difference is that the ASP model concentrates on providing an organization with the ability to move certain application processing duties to a third-party managed server. ASPs are not necessarily concerned about providing shared services to multiple tenants. Most ASPs do not consist of the required amount of application and business domain knowledge regarding the applications they run. Another difference between the ASP and SaaS approaches is that most ASP-supported applications are immense client-server programs with simple HTML Web interfaces. SaaS solutions today are designed specifically for the Web environment, which improves usability and manageability.
Internet business services are also called managed hosting. They provide Web-based support for transaction such as order processing, billing and customer relationship management. They offer online data center support, mainframe computing power for mission-critical functions and universal access via the Internet. Comcast provides more than just your cable connection and is an example of an internet business service.
Offshore outsourcing or global outsourcing is the practice of moving IT development, support and operations to other countries. The main reason for offshore outsourcing is lower bottom-line costs, however there are unique risks and concerns. There has been a large protest by workers, customer and shareholders in most companies and there is now public awareness of the possible economic impact of moving jobs offshore. Other concerns have to do with project control, security, disparate cultures and effective communication with critical functions that might be located halfway around the globe. Help desks are often examples of offshore outsourcing and go to places like India and the Phillippines.
Slide 7: Make or Buy
The choice between developing versus purchasing software is called a make or buy or build or buy decision. In-house software is developed by the company's IT department. A software package is obtained from a software vendor or application service provider and may be a standard commercial program or a customized package designed specifically for the purchaser by value-added resellers.
Developing the software in-house has several considerations:
• Satisfy unique business requirements
Minimize changes in business procedures and policies
Meet the constraints of existing systems and existing technology
Develop internal resources and capabilities
Satisfy unique security requirements
Purchasing a software package is also beneficial:
Lower costs and less time to implement
Proven reliability and performance benchmarks
Requires less technical development staff
Future upgrades provided by the vendor
Obtain input from other companies
Customizing a software package:
Purchase a basic package that the software vendor will customize to suit your needs
Negotiate directly with the software vendor to make enhancements to meet your needs by paying for the changes
Purchase the software package and make your own modifications
Slide 8: Prototyping
"Prototyping is a technique for quickly building a functioning but incomplete model of the information system using rapid application development tools. Prototyping has become the design technique of choice for many system designers and builders. Prototypes typically evolve into the final version of the system or application." [Whitten Bentley p55]
A user interface prototype as seen in the TELUS demonstration EMR includes the GUI (graphical user interface). Prototypes may also include or consist of menu structures, report layouts and message formats. Prototypes are used to gather quick feedback on usability, to enable client involvement in requirements definition and to guide analysts and designers.
1) In software development, a prototype is a rudimentary working model of a product or information system, usually built for demonstration purposes or as part of the development process. In the systems development life cycle (SDLC) Prototyping Model, a basic version of the system is built, tested, and then reworked as necessary until an acceptable prototype is finally achieved from which the complete system or product can now be developed.
2) In prototype-based programming, a prototype is an original object; new objects are created by copying the prototype.
3) In hardware design, a prototype is a "hand-built" model that represents a manufactured (easily replicable) product sufficiently for designers to visualize and test the design.
The word prototype comes from the Latin words proto, meaning original, and typus, meaning form or model. In a non-technical context, a prototype is an especially representative example of a given category.

Component 4/Unit 9c
Health IT Workforce Curriculum
6

Version 1.0/Fall 2010

