

ALL REACTIONS (Ax, Gx, AND Ay), NOTE: ASSUME THE REACTION DIRECTIONS AS SHOWN. DIAGRAM AND SOLVE DRAW THE FREE BODY FUR

Ay

400

D	\exists		B
	TI	EGR 194-01	Y:]
4	Ü	19,	00
DE C4 MX	94	4-0	ED
	TITLE: 94 LAYOUT	1	BY: DC EDWARDS
SCALF: 1:4		DATE:	
1:4		062408	

 \supset

EGR 194-01

DATE: 073008

TITLE: 94 LAYOUT

DE_C4 MX

SCALE: NTS

BY: DC EDWARDS

DISTRIBUTION ABOVE

B

W33×118 STEEL

DETERMINE THE MAXIMUM
BENDING STRESS FOR THE BEAM
AND LOAD DISTRIBUTION ABOVE
- ENSURE YOU INCLUDE THE
BEAM WEIGHT

	DE CA MY	TITLE: 94 LAYOUT	EGR 194-01	BY: UC EUWARUS
DATE: 073008	180	AYOUT	D6	スヒン
073008 NTS	ALE:		TE: (
	NTS		073008	

DIAMETER Ø4.5 INCHES

F2=3.8kips

1)DETERMINE THE MAXIMUM DEFLECTION FOR LOAD DISTRIBUTION ABOVE - NEGLECT THE THIS CASE ONLY BEAM WEIGHT IN THE BEAM AND

2) THE MAXIMUMN PERMISSIBLE DEFLECTION IS DOES THIS DESIGN PASS? CIRCLE YES OR NO. 36 F SPAN -

NOTE: MOMENT OF INERTIA (CIRCULAR SECTION) $I = \frac{1}{64}*PI*D^4(UNITS ARE IN^4)$

(RECTANGULAR SECTION) $I = (b*h^3) /12$

MODULUS OF ELASTICITY FOR STEEL IS 30,000 KSI MODULUS OF ELASTICITY FOR ALUMINUM IS 10,000 KSI MODULUS OF ELASTICITY FOR TITANIUM IS 16,500 KSI SHOW ALL WORK FOR FULL CREDIT

DE_C4	TITLE	EGR 1	BY: DC
4 MX	TITLE: 94 LAYOUT	EGR 194-01	C EDWARDS
SCALE: NTS		DATE: 073008	

W

 \bigcirc

MOMENT DIAGRAMS ON A SEPARATE SHEET FOR THE BEAM AND LOAD

DISTRIBUTION ABOVE

BY: DC EDWARDS

EGR 194-01 DATE: 073008

TITLE: 94 LAYOUT

DE_C4 MX SCALE: NTS

W27×94 STEEL

24,00 F2=6kips/ft

BENDING STRESS FOR THE BEAM AND LOAD DISTRIBUTION ABOVE - ENSURE YOU INCLUDE THE BEAM WEIGHT DETERMINE THE MAXIMUM

DE_C4 MX EGR 194-01 BY: DC EDWARDS TITLE: 94 LAYOUT

DATE: 073008

SCALE: NTS

BAR STOCK - ALUMINUM X-SECTION 5x5 INCHES

F2=3kips

LOAD THIS CASE DNLY 1) DETERMINE THE MAXIMUM DEFLECTION FOR THE BEAM AND DISTRIBUTION ABOVE - NEGLECT HE BEAM WEIGHT IN

2) THE MAXIMUMN PERMISSIBLE DEFLECTION IS DOES THIS DESIGN PASS? CIRCLE YES OR NO. 360 OF SPAN -

NOTE: MOMENT OF INERTIA (CIRCULAR SECTION) $I = \frac{1}{64}*PI*D^4(UNITS ARE IN^4)$

(RECTANGULAR SECTION) $I = (b*h^3) /12$

MODULUS OF ELASTICITY FOR STEEL IS 30,000 KSI MODULUS OF ELASTICITY FOR ALUMINUM IS 10,000 KSI MODULUS OF ELASTICITY FOR TITANIUM IS 16,500 KSI SHOW ALL WORK FOR FULL CREDIT

DF C4 MX	TITLE: 94 LAYOUT	EGR 194-01	BY: DC EDWARDS
SCALE: NTS		DATE: 073008	

 \bigcirc