check it out - classic chapter 5-MOJ (that's method of joints) problem. basically - it's a concurrent force problem from chapter 4 (that's how we'll look at it).
first, let's define the problem. see the diagram of the original "truss" below.

note the original applied loads are at point "B" (12 kip and 5 kip, respectively)


```
SQLUTIDN NDTES!
MDMENT SUM ABDUT "A"
YIELDS Cy=10.25 KIPS
MDMENT SUM ABDUT "B"
YIELDS Ay=1.75 KIPS
SUM Fy=0; SLLUTION
CHECKS
NDTEI SUM FX=0 YIELDS
Ax=-3 KIPS
```

using techniques from chapter 4 of the text, a moment sum about A yields $C y=10.25$ kips, and a moment sum about C yields $A y=1.75$ kips.
as the only applied x-force is the 3 kip force at B, the pin joint must support this force. it's magnitude will be the same, its direction opposite to the applied x-force (the figure shows this).
method of joints solutions require that we start at a point on the truss (usually a reaction point) and work across the truss.
we can only have two unknowns (recall that we are working with concurrent force systems - moments (or torques) don't come into play.
we'll start at point A. the free body diagram is shown at right.

```
SILUTIIN E A!
FIRCE SUM Fy=0
DETERMINES ABY & AB
FIRCE SUM FX=0
DETERMINES ACX & AC
NOTE: FORCES SUM TI
ZERD. ALSI, ENSURE YDU
INCLUDE ALL EXTERNAL
FORCES AT THE JOINTFOR
PDINT A, THIS INCLUDES
THE 1.75 & 3 KIP
REACTIDN FORCES
```


next, we'll sum the vertical forces to determine $A B$. note that the vertical "component" of $A B$ (ABy) must equal the vertical reaction (1.75 kips). we are saying that $A B y$ must equal the reaction at A in magnitude. it's direction must be opposite, thus it must compress or push on the joint.

```
SULUTIUN E A: 
DETERMINES ABy & AB
SUM Fy=0 (KIPS)
0=1.75-AB*SIN(48.37)
AB=2.34 KIPS (C)
(C) DENDTES CDMPRESSIVE
```

as you might expect, the magnitude of $A B$ must be a little larger than 1.75 so its vertical component equals 1.75.
note also that the sign of $A B$ is positive. does this mean $A B$ is positive? NO! what this means is that we have assumed the correct direction for AB. again, all it means is that we guessed correctly in assuming that $A B$ was compressive, that it "pushed" on joint A.
next, we'll sum the horizontal forces to determine AC. note that the sum of the horizontal "components" of $A B(A B x), A C$, and the -3 kip reaction force must equal 0 . since we know $A B$ now, we can solve for $A C$ (or $A C X$ they are the same as $A C$ aligns with the positive x axis).
as $A B$ is compressing on the joint, the magnitude of $A C$ must equal the sum of the 3 kip reaction and the horizontal component of $A B$. it's direction must be opposite to these, thus it must be tensile, or pull on 1 joint. the diagram at right assumes this.

```
SOLUTIDN E A:
FORCE SUM FX=0
DETERMINES ACX \OR
AC-THEY ARE THE SAME
BECAUSE AC ALIGNS WITH
THE PISITIVE X-AXIS)
SUM FX=0 (KIPS)
0=-3-AB*CDS(48.37)+AC
0=-3-1.55+AC
AC=4.55 KIPS (T)
(T) DENQTES TENSILE
```

as the above shows, $A C=4.55 \mathrm{kips}(T)$. the assumptions for both $A B$ and $A C$ are correct. now we are ready to go to the next joint. we'll select C, since it's a little easier to handle. once we've completed analysis at C, we'll check our solutions with a force sum at B.

the diagram at left summarizes results for joint A. the small circle is the origin. the reactions are added in, followed by $A B$ (2.34 kips) and $A C$ (4.55 kips). as you can see by the diagram, I "finish" where I started. that is the essence of statics.
at joint C there is only one unknown - that is $C B$. $C A$ is known (see figure) from the analysis at joint A. note how $C A$ is drawn in the figure. as it is tensile (see joint A solution) it remains tensile here. since it "pulls" on the joint, its direction must be in the negative x direction. we'll use this information to help us determine CB.

SOLUTIDN E C:
FDRCE SUM Fy=0
DETERMTNES CBy \& CB
FIRCE SUM $F \times=0$ UNNECESSARY - ALREAIYY
KNDW DETERMINES CA
NDTE: FПRCES SUM Tロ
ZERD. ALSD, ENSURE YロU
INCLUDE ALL EXTERNAL
FDRCES AT THE JOINT IN
THIS CASE THE 10.25 KIP
REACTIDN FПRCE SHDW/S.
$\frac{\text { SULUTIUN E C: }}{\text { FIRCE SUM Fy }}=0$
DETERMINES CBy \& CB
SUM Fy=0 (KIPS)
$0=10.25-$ CB $*$ SIN(66.04)
$\mathrm{CB}=11.22 \mathrm{KIPS}(\mathrm{C})$
(C) DENLTES CIMPRESSIVE
the diagram for joint C is at left. note that there is only one unknown.
the note at left summarizes the solution for joint C - note again that only external forces (e.g. the 10.25 kip reaction at C) are included in this joint analysis.
note the solution at left. the angle reference comes from the figure above. and the positive answer indicates that we selected the proper direction for $C B$. note that if we had gotten a negative answer, it would have meant that our actual direction for CB should have been 180 degrees from our assumption.
see the graphical solution for joint C at right. as there is only one unknown, the graphic is straightforward.
now, we'll check our solution at joint B.
we'll sum forces in the vertical and horizontal directions. if they both sum to zero, then we're good to go.

CHECK SLLUTIDN Q B
CHECK FDRCE SUM Fy=0
NDTE: FIRCES SUM TD
ZERD. ALSD, ENSURE YロU
INCLUDE ALL EXTERNAL
FORCES AT THE IDINT. IN
THIS CASE THE 12 KIP \&
3 KIP EXTERNAL FQRCES
SHDW IN FDRCE SUMS.

```
CHECK SDLUTIDN @ B:
FIRCE SUM Fy=0
SUM Fy=0 (KIPS)
0=-12+ABy+CBy
0=-12+2.34*SIN(48,37)+11.22*SIN(66.04)
0=0 CHECKS DE
```

```
ZHECK SL_UTIUN @ E:
FORCE SUM FX=0
SUM FX=0 (KIPS)
]-3+AB*C[S(48.37)-EB*CDS(66.04)
0=3+2.343*C口S(48.37)-11.22*[\squareS(66.04)
\jmath=0 CHECKS DE
```

examine the graphical solution at right. again, the small circle is the origin. the applied forces (-12 kip vertical, 3 kip horizontal) are shown in the figure. the 11.22 (C) and the $2.34 \mathrm{kip}(C)$ are added. as you can see from the figure, they sum to zero. thus, the solution checks.

